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SUMMARY

Humans and other primates are capable of learning to recognize new visual stimuli throughout their life

times. Most theoretical models assume that such learning occurs through the adjustment of the large num

ber of synaptic weights connecting the visual cortex to downstream decision-making areas. While this 

approach to learning can optimize performance on behavioral tasks, it can also be costly in terms of 

time and energy. An alternative hypothesis is that the brain favors simpler learning rules that do not neces

sarily optimize the readout of information from visual cortical neurons. Here, we have examined these hy

potheses by reversibly inactivating visual area V4 in non-human primates at different stages of training on 

form discrimination tasks. We find that V4 inactivation generally has a behavioral effect for only a subset of 

the stimuli that are encoded in the V4 population activity, specifically those that can be represented effi

ciently in the population firing rate. As a result, neural measures of discriminability do not necessarily pre

dict the causal contribution of V4 neurons to task performance. This pattern of results can be explained by 

incorporating a strong inductive bias for simpler perceptual readouts into existing theoretical frameworks. 

Such a simplicity bias is suboptimal in the sense that it ignores information that could theoretically be ex

tracted from the neural population, but it has the likely advantage of facilitating efficient learning on ecolog

ically relevant timescales.

INTRODUCTION

Neurons along the ventral visual pathway of the primate cortex 

acquire exquisite stimulus selectivity during early development.1

Although neural plasticity declines with age, stimulus represen

tations in the visual cortex can still change well into adulthood.2,3

Indeed, when adult subjects are trained on a new form recogni

tion task, neurons in ventral cortical areas like V44,5 and the infe

rotemporal cortex6,7 adjust their selectivity in such a way as to 

improve task performance.

Such changes are often modest relative to behavioral im

provements,5 and so it has been hypothesized that learning re

quires adjustments in the synaptic strength of projections from 

the ventral visual cortex to other brain areas. This is often called 

‘‘reweighting,’’8 because the readout of sensory information 

from visual cortex changes, while the representation of the rele

vant stimuli in the visual cortex remains relatively fixed.9 Models 

of perceptual learning, as well as artificial neural networks, 

generally rely on reweighting to explain changes in behavioral 

performance with training.10 While these models often achieve 

impressive performance on visual tasks, a common criticism is 

that they rely on complex learning that requires the adjustment 

of many millions of parameters.

If learning involves a reweighting of visual cortical signals, it 

might also be shaped by the stimulus representations in each 

cortical area. Specifically, visual cortical areas generally exhibit 

representational biases, which are a tendency to devote more 

neurons to the encoding of stimuli that are commonly encoun

tered in the environment. Examples include biases for cardinal 

orientations,11 faces,12 and expanding optic flow patterns,13,14

to name a few. Theoretical models have suggested that these 

representational biases can serve as inductive biases that can 

simplify learning.15–18

Here, we have examined this possibility experimentally. We 

trained two non-human primates to discriminate between 

different classes of stimuli and used reversible inactivation to 

assess how neural activity was read out during perceptual deci

sion-making. Our focus was on visual cortical area V4, which has 

a representational bias for curved or circular stimuli.19,20

We found that training on different behavioral tasks powerfully 

shaped the readout of V4 activity. In particular, training on a task 

that involved the stimulus preferred by a majority of neurons led 

to a readout that seemed to rely on total spiking activity in the 

local V4 population. This is a simple readout, because it does 

not require reweighting of the outputs of different neurons and 

indeed can be achieved with the adjustment of a single param

eter, namely a threshold applied to the population response.

In contrast, training on a task that involved non-preferred stim

uli led to a more conventional readout that made use of different 

V4 subpopulations, weighted by reliability. This readout is more 

complex, because it requires a reweighting of many different 

neuronal outputs according to their selectivity for the relevant 
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stimuli. Although the complex readout extracts more information 

from the neuronal population, we found that the brain generally 

preferred to rely on the simpler readout when it was relevant to 

the task.

We conclude that the representational biases in the visual cor

tex lead to strong inductive biases during the learning of new 

tasks. These inductive biases favor readout strategies that are 

simpler to learn, even though this approach potentially ignores 

much of the stimulus information that is encoded in the corre

sponding neural populations.21 We speculate that a preference 

for simpler readout strategies renders perception susceptible 

to the kinds of biases that are widely reported for other cognitive 

operations.22–25

RESULTS

Cortical area V4 is organized into domains or clusters of neurons 

that are specialized for representing particular stimulus clas

ses.26–31 To thoroughly examine how these representational 

biases relate to behavior, we restricted our recordings to a single 

small patch of V4, roughly 2 × 2 mm, in each of two non-human 

primates (see STAR Methods and Figure S1A). We first charac

terized the representation of visual stimuli in these patches, in 

two experimentally naive animals. We then asked how the 

readout from these patches depends on stimulus representa

tions and on learning.

V4 contains domains with a representational bias 

toward circular stimuli

Prior to training on any discrimination task, we assessed 

local neural selectivity by presenting various stimuli to the 

animals during passive fixation. The size and position of 

the stimuli were chosen to cover the receptive fields (RFs) 

of the neurons under study (Figure S1B). During this prelim

inary phase of the experiment (Figure 1A), we recorded from 

a total of 208 neurons (74 neurons in monkey 1 and 134 in 

monkey 2).

To assess selectivity, we presented a set of 152 diverse im

ages spanning 19 categories, from synthetic shapes to natural 

images (see STAR Methods and Figure S1C). We then generated 

representational dissimilarity matrices (RDMs32) that charac

terize the pairwise differences in population firing patterns eli

cited by different stimuli (see STAR Methods for details). As 

shown in Figure 1C, the RDM revealed strong pairwise discrim

ination between circular patterns and all other stimuli (see STAR 

Methods, hierarchical clustering analysis).

This latter finding is consistent with previous work,19,27,30

which has also found that many local V4 domains exhibit a 

preference for curved or circular patterns. In our data 

(Figure S1D), this representational bias was most pronounced 

in response to low spatial-frequency grating patterns: circular 

grating stimuli elicited higher firing rates than the orthogonal 

stimulus, a radial pattern (Figure 1B). Overall, 74% (55/74) of 

the neurons in monkey 1 and 66% (88/134) of the neurons in 

monkey 2 preferred circular gratings over radial gratings, lead

ing to a strong circular preference at the population level in 

both monkeys (monkey 1, F(3,70) = 9.13, p < 0.01; monkey 2, 

F(3,132) = 6.21, p < 0.01; ANOVA, false discovery rate 

[FDR]-corrected).

Subjects exploit biased V4 representational biases in a 

perceptual decision-making task

To determine how representational biases in V4 shaped learning, 

we trained both animals to perform a delayed match-to-sample 

(DMS) task (Figure 1D) that involved discriminating between cir

cular and radial gratings. On each trial, the animals maintained 

fixation while a noisy sample stimulus was presented in the 

RFs of the neurons being recorded. After a brief delay, the ani

mals had to saccade to the unpredictable location of the stimulus 

that matched the sample. In phase 1 of the experiment, we used 

gratings of low spatial frequency, specifically 0.75 cycles per de

gree (cpd) for monkey 1 and 1.0 cpd for monkey 2, as these 

generated the largest responses in V4 (Figure 1B). Average neu

rometric discriminability of these stimuli for individual V4 neurons 

is shown in Figure S2B.

After several weeks of training (70 sessions for monkey 1 and 

39 sessions for monkey 2), both animals learned to perform this 

task accurately and without a behavioral bias for either stimulus 

(see STAR Methods and training period inset in Figure 2A). We 

then probed the readout of neuronal information by injecting 

muscimol into the targeted V4 domains. Muscimol is a powerful 

GABA receptor agonist, and previous work has shown that in

jecting this volume into visual areas abolishes spiking activity 

over a radius of 1–2 mm,33–35 sufficient to cover the stimulus-se

lective domains in V4.30 In each session (10 sessions in monkey 1 

and 4 sessions in monkey 2), we verified that neural activity was 

silenced near the site of injection (mean firing rate before injec

tion, 14.34 ± 3.15; 45 min after injection, 0.21 ± 0.02; 

p < 0.001, Wilcoxon rank sum [WRS] test).

Figure 2A (black lines) shows the behavioral results for each 

animal, with the percentage of radial choices represented on 

the y axis of each plot. Following inactivation with muscimol, 

a bias toward radial choices appeared, starting 45 min after 

injection (orange lines), peaking 18 h later (purple lines) and 

returning to baseline after 2 days (gray lines). A similar result 

was observed consistently across individual inactivation ses

sions (see Figure S2A). Considering the two grating types 

separately (see STAR Methods), muscimol increased the 

behavioral threshold for circular gratings by an average of 

51% compared with the pre-injection baseline (45 min, 

46% ± 14% for monkey 1 and 37% ± 18% for monkey 2; 

18 h, 66% ± 12% for monkey 1 and 57% ± 20% for monkey 

2; p < 0.05 for both monkeys at 45 min and 18 h, WRS test 

Figure 2B). In contrast, for radial grating stimuli, the behav

ioral threshold changed by an average of only 2% ± 3% 

(45 min, 2% ± 3% for monkey 1 and 7% ± 5% for monkey 

2; 18 h, 0% ± 2% for monkey 1 and − 1% ± 2% for monkey 

2; p > 0.05 for both monkeys at 45 min and 18 h, WRS test 

Figure 2B). Thus, both animals developed a significant bias 

toward radial grating stimuli after inactivation (Figure 2C; 

monkey 1, mean bias difference = 0.34 ± 0.06, p = 0.02; mon

key 2, mean bias difference = 0.44 ± 0.1, p = 0.026, 

WRS test).

Interestingly, inactivation of V4 had little effect on performance 

for noisy stimuli (0%–8% SNR; Figure 2C). Because the least 

noisy stimuli elicited the strongest firing rate preference 

(Figure S2C), the results are consistent with a simple readout 

strategy that specifically exploits the preference for circular stim

uli in V4, as explored further in the next section. Note that the 
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apparently uniform upward shift of the logistic functions for mon

key 2 (Figure 2A, right) is a consequence of asymmetry in the 

baseline behavioral data (Figure 2C, right).

To control for non-specific effects of the inactivation proced

ure, we performed a series of control experiments (Figure S3). 

We first verified that behavioral impairments were not due to 

the injection per se, since injecting only saline into the same V4 

region had no effect on the animals’ performance (p > 0.05, Wil

coxon signed-rank [WSR] test, Figure S3A). Behavioral thresh

olds were also not affected by muscimol injections when the 

visual stimuli were displaced to a different retinal location, indi

cating that the effects were specific to the RFs of the inactivated 

V4 neurons (p > 0.05, WSR test, Figures S3B and S3C).

A scalar readout strategy can explain perceptual biases

The results shown in Figure 2 are reminiscent of the predictions 

of scalar readout models,17,36,37 in which the presence or 

absence of a stimulus is inferred from the total neural population 

response. For our task, a large V4 population response is asso

ciated with circular stimuli and a small population response with 

radial stimuli (Figure 1B).17 Relying on this asymmetry can 

simplify the process of learning the DMS task; indeed, in the limit 

the only parameter that has to be optimized is a threshold 

applied to the total activity in the V4 population17 (Figure 3A). 

This kind of simple model is distinct from the distributed readout 

models typically used in perceptual learning and decision- 

making38 (Figure 3B), which adjust the readout weights of 

A B

C D

Figure 1. Experimental phases and V4 neural coding 

(A) Training phases: following the preliminary phase identifying V4 neuronal selectivity, in phase 1, animals trained and were tested with low-frequency gratings. In 

phase 2, they trained with high-frequency gratings and were tested first with high and then low frequencies during inactivation. In phase 3 (monkey 1 only), the 

animal retrained with low-frequency gratings and was tested during inactivation. 

(B) Tuning curves across spatial frequencies for noiseless circular and radial gratings in monkey 1. Circular gratings consistently elicited stronger responses at low 

frequencies, with the largest difference at 1 cpd. Low-frequency gratings were used during phase 1 training (green arrows) and high-frequency gratings during 

phase 2 (purple arrows). 

(C) Representational dissimilarity matrices (RDMs) for V4. Each element color codes the dissimilarity between two neuronal response patterns, with yellow 

indicating high dissimilarity and blue high similarity. 

(D) Delayed match-to-sample task: animals maintained fixation for 500 ms before stimulus onset. After a 200 ms sample (noisy circular or radial grating), a 

randomized delay (250–500 ms) followed. The task concluded with circular and radial gratings appearing randomly on either side of the fixation point. Error bars 

indicate the standard error of the mean (SEM). Asterisks denote statistically significant differences. Cpd: cycles per degree. 

See also Figure S1.
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many neurons across the population in such a way as to 

eliminate biases and to optimize the readout of sensory 

information.17,39–41

One prediction of the scalar readout model is that reducing 

the overall population activity in V4 should lead to a bias to

ward radial stimuli.17 This can be accomplished by lowering 

the contrast of the stimuli, which has the effect of reducing 

firing rates across the visual cortex,42 albeit not as powerfully 

as muscimol. For a scalar readout of circular stimuli, reducing 

contrast should lead to a perceptual bias toward radial stimuli 

(Figure 3A). In contrast, for a more distributed readout 

(Figure 3B), lower contrast should lead to decreased perfor

mance for both classes of stimuli. We therefore tested this 

hypothesis by performing additional experiments, in which 

A

B

C

Figure 2. Behavioral impact of V4 inactivation in phase 1 

(A) Psychometric functions in phase 1. Psychometric functions fitted to behavioral data at various time points after inactivation show that inactivation of V4 

neurons in both animals substantially impaired detection of low spatial frequency circular gratings. No behavioral deficits were observed at any subsequent time 

points after inactivation for radial gratings. For visualization purposes, solid lines show fits of a logistic function to the behavioral data at different time points 

relative to muscimol inactivation. 

(B) Behavioral thresholds increased for circular gratings following inactivation. The left images depict changes in psychometric thresholds for circular gratings; the 

right images depict changes for radial gratings. Inset: the psychophysical behavioral thresholds across training sessions, showing the gradual improvement in 

performance leading up to stable task acquisition prior to muscimol inactivation. 

(C) Behavioral bias changed after injection of muscimol. We calculated the difference in behavioral bias between 18 h post-injection and pre-injection sessions 

across all noise levels. For monkey 1, significant bias differences were observed at noise levels of 100%, 65%, and 25% (p < 0.05, WSR test). For monkey 2, 

significant differences were observed at noise levels of 100% and 65% (p < 0.05, WSR test). Positive values in this plot represent a bias toward radial gratings and 

negative values represent a bias toward circular gratings. Error bars indicate the SEM. Asterisks denote statistically significant differences (p < 0.05). 

See also Figure S2.
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we interleaved high-contrast (100%) and low-contrast (50%) 

stimuli during three behavioral sessions.

As shown in Figure 3C, reducing stimulus contrast produced a 

significant bias toward radial choices for low-contrast images 

(mean bias difference = 0.18 ± 0.07, p = 0.041, WRS test), similar 

to what we observed during V4 inactivation. This is again consis

tent with a readout that relies on total firing rates in V4 and high

lights the vulnerability of this strategy to changes in the stimulus 

statistics.43 As shown below, the brain is actually capable of 

learning a distributed readout from the same V4 population but 

apparently has an inductive bias for the simpler strategy afforded 

by the population response.

Different readouts for different brain regions in the 

same task

Our results thus far suggest that the firing rate preference in V4 

shapes the readout of sensory information by decision-related 

A B

C D

E F

Figure 3. Readout models, impact of 

contrast reduction and PIT inactivation 

(A) In the scalar readout model, perceptual de

cisions are based on the total population response 

of V4. Because more V4 neurons prefer circular 

gratings than radial ones, the brain can set a de

cision criterion based on the overall firing rate: 

when total neural activity exceeds this criterion, 

the stimulus is perceived as a circular grating; 

when activity falls below the threshold, it is 

perceived as a radial grating. 

(B) In the distributed readout model, perceptual 

decisions are based on the selective pooling of V4 

neurons tuned to different stimuli (circular-selec

tive neurons shown in blue and radial-selective 

neurons in orange). To optimize discrimination, the 

brain learns to assign greater weights to neurons 

with stronger selectivity, with line thickness rep

resenting the strength of these weights. 

(C) Effect of reduced contrast on grating discrimi

nation. This image shows the average behavioral 

performance across three sessions from a 

contrast manipulation experiment, in which high- 

contrast (100%) and low-contrast (50%) low 

spatial frequency gratings were interleaved in each 

session. 

(D) RDM for PIT. Unlike V4, PIT exhibited slightly 

greater selectivity for natural images. 

(E) PIT showed no significant differences in 

neuronal responses between the two grating types 

(circular vs. radial) at any noise level (p > 0.05, t 

test). 

(F) Behavioral impact of PIT inactivation. Muscimol 

inactivation of PIT neurons (6 sessions) resulted in 

a small but consistent behavioral deficit for both 

types of gratings. However, the impact was more 

pronounced for noisier stimuli. Error bars indicate 

the SEM. 

See also Figure S3.

brain regions. However, the opposite di

rection of causation is also possible: 

perhaps the particular behavioral salience 

of circular stimuli44 causes them to be 

read out preferentially.45 In that case, 

one would expect to find a similar readout strategy elsewhere 

in the brain.

To examine this issue, we repeated the inactivation experi

ment in a second area, the posterior inferotemporal (PIT) cortex. 

We first recorded neural activity and confirmed that this area has 

a general capacity to discriminate natural images46 (Figure 3D) 

but no firing rate preference for circular or radial gratings 

(Figure 3E). As shown in Figure 3F, inactivation of PIT (6 sessions) 

caused a modest reduction in performance 18 h after injection. 

Thresholds increased by 8.7% ± 3.2% for circular gratings 

(p > 0.05, WRS test) and 10.2% ± 4.0% for radial gratings 

(p > 0.05, WRS test). However, in contrast to the effects of V4 

inactivation, the effects were similar for the two stimulus classes, 

and there was no significant perceptual bias introduced by inac

tivation (p > 0.05, WRS test). Interestingly, muscimol inactivation 

of PIT led to the strongest impairments for the noisiest stimuli 

(SNR 3%, mean deficit = 13.25% ± 3.1%, p < 0.01; SNR 6%, 
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mean deficit = 13.8% ± 3.5%, p = 0.02, sign test; Figure 3F), in 

contrast to V4 inactivation, which most strongly affected perfor

mance for the least noisy stimuli (Figure 2C).

These results suggest that the readout makes use of different 

readout strategies, depending on the cortical representation of 

the trained stimuli.47–49 We next examined this idea in detail.

V4’s contribution to the discrimination task is much 

weaker for other kinds of stimuli

To the extent that representational biases shape visual learning, 

we should be able to alter the readout of sensory information by 

changing the stimuli used during training. To examine this possi

bility directly, we retrained the animals with gratings of higher 

spatial frequencies (2 cpd), across 54 sessions for monkey 1 

and 48 sessions for monkey 2 (see STAR Methods and training 

period inset in Figure 4A). For these stimuli, the average re

sponses of V4 neurons were similar for circular and radial pat

terns (Figure 1B; p > 0.05, t test), and the neuronal population ex

hibited a balanced preference (monkey 1, 55% preferred high 

spatial frequency circular gratings, 45% radial; monkey 2, 52% 

circular, 48% radial). Nevertheless, neural discriminability was 

largely independent of spatial frequency—a support vector ma

chine (SVM) classifier trained on the V4 population achieved a 

mean accuracy of 70.24% ± 0.54% for low spatial frequencies 

and 68.47% ± 0.69% for high spatial frequencies, with no signif

icant difference between conditions (p > 0.05, t test; see STAR 

Methods). Corresponding neurometric data are shown in 

Figure S4B.

After a few weeks of training on the high spatial frequency task 

(phase 2; Figure 1A), the readout strategies were again probed 

with muscimol inactivation and neuronal recordings at the 

same sites as in phase 1 (4 sessions in monkey 1 and 3 sessions 

in monkey 2). RF eccentricities were not significantly different 

between the two phases (1.6◦ ± 0.7◦ in phase 1 and 1.5◦ ± 0.6◦

in phase 2 for monkey 1, p < 0.05, WRS test; 2.4◦ ± 0.9◦ in phase 

1 and 2.6◦ ± 0.8◦ in phase 2 for monkey 2, p < 0.05, WRS test).

Surprisingly, despite the robust discriminability of the relevant 

stimuli in V4 (Figure 1C), muscimol inactivation caused negligible 

impairments in performance on the high spatial frequency 

grating discrimination task (Figures 4A and S4A; mean change 

in threshold values relative to pre-injection were as follows: 

45 min, 2.31% ± 1.32% for monkey 1 and 9.23% ± 5.19% for 

monkey 2; 18 h, 2.47% ± 2.16% for monkey 1 and 13.81% ± 

6.28% for monkey 2). There was no discernible threshold change 

after inactivation in monkey 1 and a weak effect in monkey 2 that 

did not reach significance (p > 0.05, WSR test, monkey 1 and 

monkey 2).

These results were similar for the two stimulus classes. For cir

cular gratings, the threshold increase at 45 min and 18 h post-in

jection was 5% ± 10% and 7% ± 8% (45 min, 4% ± 5% for mon

key 1 and 9% ± 4% for monkey 2; 18 h, − 1% ± 3% for monkey 1 

and 14% ± 6% for monkey 2; Figure 4B). A similar pattern was 

observed for radial gratings (45 min, 1% ± 3% for monkey 1 

and 10% ± 6% for monkey 2; 18 h, 6% ± 5% for monkey 1 

and 13% ± 4% for monkey 2; Figure 4B). As a result, the 

animals did not develop a bias toward either grating type with 

inactivation (Figure 4C). These results suggest that the readout 

had largely switched to some another brain region33,50 or was 

distributed across many brain regions,51,52 in such a way that 

the contribution of V4 was unimportant. The latter would be likely 

if other brain regions exhibited a similarly unbiased encoding of 

high-frequency grating stimuli. In any case, the role of V4 in de

cision-making appeared to be defined by the representational 

bias in the local population response.

To further examine this possibility, we retested the animals 

with the preferred (low spatial frequency) stimuli, immediately af

ter training and data collection with high spatial frequency stim

uli. Single-unit recordings revealed that the V4 population main

tained a strong preference for low spatial frequencies and 

circular gratings in this phase, as indicated by the difference in 

mean normalized activity for low spatial frequency circular and 

radial gratings (preliminary phase, 0.17 ± 0.037; phase 1, 

0.18 ± 0.041; phase 2, 0.16 ± 0.052; p < 0.05 for all phases, 

t test).

Although these stimuli were identical to those used in phase 1, 

muscimol inactivation during phase 2 led to significant deficits in 

performance for both grating types (5 sessions for monkey 1 and 

5 sessions for monkey 2) (Figures 5A and S5B). For circular grat

ings, the average threshold increase 45 min after injection was 

37% ± 10%, rising to 59% ± 8% at 18 h post-injection (45 min, 

49% ± 9% for monkey 1 and 25% ± 7% for monkey 2; 18 h, 

65% ± 6% for monkey 1 and 52% ± 12% for monkey 2; 

Figure 5B). Similarly, for radial gratings, inactivation caused a 

significant decrease in performance, with the average threshold 

increase 45 min post-injection being 45% ± 17%, increasing to 

57% ± 7% at 18 h (45 min, 39% ± 16% for monkey 1 and 

54% ± 14% for monkey 2; 18 h, 64% ± 5% for monkey 1 and 

48% ± 11% for monkey 2; Figure 5B). Corresponding neuromet

ric data are shown in Figure S5A.

Thus, while there were large increases in behavioral threshold 

for both monkeys (mean increase 18 h after injection: 58% ± 5% 

for monkey 1 and 55% ± 9% for monkey 2, p < 0.05, WSR test), 

there was no bias toward either grating type at any time point af

ter injection (monkey 1, p > 0.05; monkey 2, p > 0.05, WRS test; 

Figure 5C). This suggests that training with non-preferred stimuli 

led to the development of a distributed readout strategy 

(Figure 3B) more consistent with typical discrimination models.53

Because this readout was shaped by training with non-preferred 

stimuli, it was likely suboptimal for the low spatial frequency grat

ings, and indeed behavioral performance on these stimuli was 

worse in phase 2 than in phase 1 (mean behavioral d’ across 

all noise levels [monkey 1], phase 1 = 1.54 ± 0.81, phase 2 = 

1.21 ± 0.98, p = 0.024; mean d’ [monkey 2], phase 1 = 1.31 ± 

0.83, phase 2 = 1.16 ± 0.94, p = 0.011, t test). Nevertheless, 

the causal impact of V4 remained apparent only for the preferred 

(low spatial frequency) stimuli.

Overall, these results indicate that the effects of causally 

manipulating neural activity are better predicted by representa

tional biases than by standard measures of discriminability. To 

examine this issue at the neuronal level, we next attempted to 

estimate the readout weights of the V4 population across exper

imental phases.

Single-neuron readout weights reveal a change in 

strategy with training

The actual contributions of individual V4 neurons to perceptual 

decisions cannot be measured directly in our experiments, but 

under reasonable assumptions they can be inferred from 
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correlations between neural firing and behavioral responses.53

Specifically, the readout weight for each neuron can be esti

mated from its choice probability (CP) and its noise correlations 

with other neurons.54–56 CP measures the extent to which the 

variability in a neuron’s responses predicts an animal’s behav

ioral choices,53 while noise correlations are shared variability 

across neurons. For these analyses, we combined data across 

animals, although the results were similar at the individual level 

(Figure S6A).

Figure 6A shows the readout weights recovered for neurons 

with different stimulus preferences across different experimental 

phases, using the method devised by Haefner and colleagues.55

In phase 1, readout weights were significantly positive for circu

lar-preferring neurons and significantly negative for radial- 

preferring neurons (Table S1; F [5,269] = 4.77, p < 0.01; 

ANOVA, FDR-corrected). The negative weights mean that higher 

firing rates in this population were associated with a lower likeli

hood that the animals would report seeing its preferred (radial) 

stimulus. This is consistent with the idea that higher firing rates 

in the population response were used to infer the presence of 

a circular grating,17 irrespective of the preferences of any individ

ual neuron (Figure S6B).

A

B

C

Figure 4. Behavioral impact of V4 inactivation in phase 2 for high spatial frequency stimuli 

(A) Psychometric functions in phase 2. Following training with high spatial frequency gratings, V4 inactivation had little effect on behavioral performance. Inset: the 

psychophysical behavioral threshold across training sessions, showing the gradual improvement prior to muscimol inactivation. 

(B) Behavioral thresholds did not change significantly for either grating type in either animal (p > 0.05, WSR test). 

(C) Behavioral biases were similar between 18 h post-injection and pre-injection sessions across all noise levels for both animals (p > 0.05, WSR test). 

Error bars indiate the SEM. 

See also Figure S4.
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In phase 2, however, the readout weights for both circular- and 

radial-preferring neurons became significantly positive for both 

low and high spatial frequencies (Table S1), indicating a shift to

ward a more distributed discrimination strategy (Figure S6B). 

The increase in readout weights for radial-preferring neurons 

from phase 1 to phase 2 was statistically significant (F 

[5,269] = 4.77, p < 0.05; ANOVA, FDR-corrected).

The changes in readout weights were mostly attributable to 

changes in CP, although there were changes in noise correla

tions as well (Table S1; Figure S6C). The CP patterns mirrored 

the readout weights (Figure 6B). In phase 1, radial-selective 

neurons had CPs below chance level (0.5), while in phase 2, their 

CPs significantly increased above 0.5 (F [5,269] = 5.26, p < 0.05; 

ANOVA, FDR-corrected). In contrast, circular-selective neurons- 

maintained CPs above 0.5 across all phases.

Of particular relevance to the nature of the V4 readout was the 

correlation between each neuron’s CP and its ability to discrim

inate between the two stimuli9,55,56 (d’). In phase 1, this was pos

itive for the neurons with circular preferences (r = 0.47, p < 0.01, 

Pearson correlation; Figure 6C) but negative for the radial-prefer

ring neurons (r = − 0.34, p = 0.02, Pearson correlation; Figure 6C), 

again suggesting a scalar readout strategy based only on 

A

B

C

Figure 5. Behavioral impact of V4 inactivation in phase 2 for low spatial frequency stimuli 

(A) Psychometric functions for low spatial frequency stimuli in phase 2. Following training with high spatial frequency gratings, when the animals were tested with 

low spatial frequency gratings, inactivation impaired the detection of both circular and radial grating images in both animals. 

(B) Behavioral thresholds increased significantly for both types of gratings after inactivation (p < 0.05, WSR test, monkey 1 and monkey 2). 

(C) There was no difference in behavioral bias between 18 h post-injection and pre-injection sessions across all noise levels in both animals (p > 0.05, WSR test). 

Error bars indicate the SEM. Asterisks denote statistically significant differences. 

See also Figure S5.
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population firing rate. By contrast, in phase 2, for high spatial fre

quencies, the correlation between CP and d’ was positive for 

both circular- and radial-selective neurons, although it reached 

statistical significance only for circular-selective neurons (r = 

0.6, p = 0.015, Pearson correlation; Figure 6C) and not for 

radial-selective neurons (r = 0.39, p > 0.05, Pearson correlation; 

Figure 6C), possibly due to the small sample size.

Thus, between phase 1 and phase 2, the readout from V4 

began to weight neurons according to their selectivity for both 

circular and radial gratings, as found in previous studies.9,57 As 

suggested by the inactivation results (Figure 5), this distributed 

weighting also influenced the perceptual readout for low spatial 

frequency gratings, even though there was no relationship be

tween CP and d’ for these stimuli (r = 0.08, p > 0.05 for circu

lar-selective neurons; r = 0.07, p > 0.05 for radial-selective neu

rons, Pearson correlation; Figure 6C).

In contrast to the large changes in readout weights, we found 

little evidence for a change in single-neuron stimulus representa

tions with training. For low spatial frequency gratings, the 

average neurometric sensitivity was typically lower than behav

ioral sensitivity (Figure S5B; monkey 1, neurometric threshold = 

28.63 ± 11.68, behavioral threshold = 5.32 ± 2.11, p = 0.012; 

monkey 2, neurometric threshold = 30.47 ± 14.21, behavioral 

threshold = 6.69 ± 3.57, p = 0.009; WSR test), and neurometric 

thresholds did not change across experimental phases 

(p > 0.05 for both monkeys, WSR test).

Decision readouts prefer to rely on representational 

biases when possible

Finally, we considered the possibility that the readout formed in 

phase 2 was a cumulative result of training in phases 1 and 2, 

rather than a reaction to the specific stimuli used in phase 2. 

Indeed, some artificial neural networks learn low-dimensional 

solutions early in training, which is refined after further exposure 

to the relevant inputs.16,43,58 We therefore retrained one animal 

for 10 sessions (see training period inset in Figure 7B) in a third 

phase, which was identical to phase 1, being comprised only 

of exposure to low spatial frequency gratings. We then inacti

vated the same population of V4 neurons.

As shown in Figure 7A, the effect of inactivation on radial 

grating trials decreased rapidly across sessions, while it re

mained consistent for circular grating trials. By the final session 

(Figures 7A and 7B), threshold increases were significant for cir

cular gratings at both 45 min and 18 h post-injection compared 

A B

C

Figure 6. Phase-dependent changes in V4 neuronal readout weights, choice probabilities, and noise correlations 

(A) Mean readout weights of V4 neurons: readout weights were calculated for neurons with different stimulus preferences across experimental phases. In phase 1, 

radial-selective neurons (orange) had negative weights, which were significantly different from those of circular-selective neurons (blue) (p < 0.05; ANOVA, FDR- 

corrected). In phase 2, there was no significant difference between the two groups for both low and high spatial frequency stimuli. 

(B) Mean CPs of V4 neurons: changes in CPs mirrored the changes seen in the readout weights. 

(C) Relationship between CPs and d′: in phase 1, radial-selective neurons (orange) showed a negative relationship between CPs and d′, while circular-selective 

neurons (blue) exhibited a positive relationship. In phase 2, this relationship was positive for both groups, for both low and high spatial frequency stimuli. Error bars 

indicate the SEM. Asterisks denote statistically significant differences. 

See also Figure S6; Table S1.
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with pre-injection levels (p < 0.05, permutation test), with no sig

nificant change observed for radial grating stimuli at any time 

point after injection (p > 0.05, permutation test). As a result, during 

phase 3, the animal developed a bias toward radial grating stimuli 

following muscimol injection. By the final session of this phase, 

both the behavioral threshold pattern and the magnitude of the 

bias closely resembled those observed in phase 1 (Figures 7C 

and 7D). As in phase 1, the radial bias at 18 h post-injection 

was strongest for the stimuli with the lowest noise levels 

(100%, 65%, and 25% SNR) (p = 0.032, permutation test). 

Thus, the readout strategy, as assessed with muscimol inactiva

tion, had reverted to the one used in phase 1, suggesting that the 

cortex exploits population representational biases when they are 

available, regardless of the total amount of time spent on training.

DISCUSSION

In this work, we have probed the readout of visual information 

from area V4 of the primate visual cortex. V4 has a 

representational bias for certain classes of stimuli, and our re

sults demonstrate that this specialization powerfully affects the 

readout used in behavioral tasks. In particular, the brain learns 

to exploit representational biases (Figure 1B) to generate a scalar 

readout of preferred stimuli. As a result, reducing neural activity 

in V4 leads to predictable behavioral biases (Figures 2 and 3C), 

which are not seen with inactivation of nearby area PIT 

(Figure 3F). For non-preferred stimuli, a more conventional, 

distributed readout of V4 activity forms, but it has little impact 

on behavior (Figure 4). Thus, the contribution of V4 to behavior 

and perception appears to be determined in large part by repre

sentational biases (Figures 5 and 7), as confirmed by single- 

neuron correlations with behavioral choices (Figure 6).

Comparison with previous studies

A number of studies have created permanent lesions in V4, 

revealing deficits in the perception of color,59,60 three-dimen

sional objects,61 and textures.62 Effects on the perception of 

two-dimensional features are somewhat variable,60,63–65 but 

A B

C D

Figure 7. Behavioral impact of V4 inactivation in phase 3 

(A) For monkey 1, psychophysical thresholds are plotted against the number of inactivation sessions, comparing phase 2 and phase 3. In phase 3, for four 

sessions, we inactivated V4 neurons while testing the monkey with low spatial frequency gratings (sessions after the vertical line). The effect of inactivation 

remained constant for circular gratings, but decreased session by session for radial gratings, with thresholds approaching those seen in phase 1 (dashed line). 

(B) Fitted psychometric functions of the last session of inactivation in phase 3. Inset: the psychophysical behavioral threshold across training sessions, prior to 

muscimol inactivation. 

(C) Behavioral thresholds increased significantly for circular gratings following inactivation, consistent with the pattern observed in phase 1, while thresholds for 

radial gratings remained largely unchanged. 

(D) A similar pattern of behavioral bias was observed between pre-injection and 18-h post-injection. Error bars represent standard errors computed from 

bootstrapped data (see STAR Methods). Asterisks indicate statistically significant differences (p < 0.05, permutation test).
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this likely reflects the extent of the lesion relative to the scale of 

functional domains in V4.66

Other studies have used temporary methods to manipulate 

neural activity in V4. In one case, cryogenic inactivation of 

larger (centimeter-scale) domains caused reliable form 

discrimination deficits,67 though this was not related to the un

derlying neural selectivity. Another study used electrical stim

ulation to bias the perception of depth from retinal disparity.68

This latter result is similar to what is often observed in micro

stimulation studies of other areas,69 and it bears a superficial 

resemblance to the behavioral biases we have observed in V4 

(Figure 2). However, these previous studies have microstimu

lated much smaller (100 micron-scale), feature-selective col

umns69 than the millimeter-scale domains that we have inacti

vated. Microstimulation of larger (millimeter-scale) domains 

generally causes balanced deficits, rather than biases toward 

particular stimuli.70

As shown in Figure 3F, we also inactivated a second region, 

area PIT. Although we did not attempt to tailor the stimuli to 

the preferences of the local stimulus domain, we observed small 

but reliable effects on behavior. These were strongest for the 

noisiest stimuli, which suggests that this area could play a role 

in spatial integration, as found in other areas.71 In the mouse cor

tex, high-level areas perform an analogous function in tasks that 

require temporal integration.72

Rajalingham and DiCarlo34 performed a more thorough study 

of local IT domains and concluded that the behavioral effects of 

muscimol inactivation were best predicted by the discriminability 

of the relevant stimuli in the local neuronal population,34 as found 

previously.38,57,73,74 In contrast to our findings (Figure 3), overall 

response levels in IT did not predict the behavioral effects of 

inactivation. This suggests that there might be differences in 

the ways that information is read out from V4 and IT. One possi

bility is that object discrimination is generally performed by IT, 

while detection of specific stimuli is initiated by lower-level areas 

like V4, as has been suggested for face processing.20,75,76

However, in some experiments, Rajalingham and DiCarlo34

did observe a significant ‘‘choice bias’’ away from the locally 

preferred stimulus after IT inactivation (their Figure S2), similar 

to our findings in V4 (Figure 2A). Thus, it would be interesting 

to compare V4 and IT readouts more directly, by inactivating IT 

domains with strong firing rate biases for specific stimuli. It would 

also be interesting to examine how the IT readout changes with 

experience in different behavioral tasks.77

Our finding that the V4 readout can change with training 

(Figures 4 and 5) is reminiscent of previous work showing a flex

ible readout of stimulus information from the middle temporal 

(MT) area.9,33,50,78 We have suggested previously that some of 

this plasticity reflects a preference for simpler readout strate

gies,17 as has been found in mouse V1,37 in artificial neural net

works,43 and in psychophysics.17 These results highlight the fact 

that the stimulus representations in neuronal populations are 

often insufficient to predict the causal impact of that population 

on behavior.33,47,50,79,80

Although this work has focused on changes in readout strate

gies, our neural recordings indicate that the V4 representation 

maintained its preference for low spatial frequencies and circular 

stimuli across all phases of the experiment, and that there was no 

obvious change in measures of neural discriminability across 

phases (Figures S2B, S4B, and S5B). Thus, while stimulus repre

sentations in V4 often change in more subtle ways with training,4

the fundamental stimulus preferences of cortical domains ap

peared fixed throughout our experiments.

Theoretical implications

Many modern artificial neural networks exhibit a ‘‘simplicity 

bias,’’ which is a tendency to find learning shortcuts that exploit 

the lower-dimensional structure of the input stimuli or the 

task.43,81 These strategies emerge early in training and are grad

ually replaced by more complex ones as training continues.16,58

Our work shows a neural correlate of this inductive bias, since 

the readout of V4 during phase 1 relied on a simple (low-dimen

sional) readout. However, our data from phase 3 suggest that 

this bias can reemerge even after a more complex one has 

been learned (Figure 7), consistent with a more general prefer

ence for simpler readouts.82 Given the low-dimensional nature 

of this kind of readout, one might expect abrupt changes in 

task performance during learning, although this was not some

thing that our behavioral training methods were designed to 

detect.

Previous studies related to area V1,37 area MT,78,83 area 

MST,17 and the parietal cortex84 have revealed evidence for 

similar low-dimensional or scalar readouts. In our experiments, 

the scalar readout from V4 seemed to co-exist with a more 

distributed readout from PIT (Figure 3). Indeed, although V4 pro

vides a robust representation of the relevant visual stimuli, none 

of our experiments indicate that the subjects relied exclusively 

on V4 for task performance. The inactivation results from phase 

1 of the experiment suggest that the brain used V4 primarily for 

detection of low-noise circular patterns (Figure 2), while noisier 

stimuli were read out in part from PIT (Figure 3). In phase 2, the 

role of V4 was greatly reduced in favor of some unknown brain 

region or regions (Figure 4).

At present, we do not know how different cortical areas are re

cruited for different tasks. One possibility85 is that biased cortical 

domains generate population responses that are more amenable 

to learning by downstream areas,16,18,58 by virtue of their shared 

stimulus preferences and noise correlations.55,86,87 This would 

be consistent with the idea that task learning involves a compe

tition among cortical domains for access to downstream deci

sion-making areas.88–91 Such a competition could lead to a 

distributed readout for stimuli for which representational biases 

are weak or absent, as suggested in phase 2 of our experiment 

(Figure 4A). Given that many perceptual learning tasks rely on 

(non-cardinal) orientation discrimination, a similarly distributed 

readout may emerge in these cases.

Implications for perception

The V4 readout that emerged in phase 1 of our experiments 

(Figure 2) appears to ignore much of the information in the 

neuronal population and actually assigns weights with the wrong 

sign to many neurons (Figure 6). This highlights an important 

point that is often raised in the psychology literature23: the brain, 

having evolved to solve real-world problems, favors fast solu

tions (heuristics) that can be reached with noisy or incomplete 

data, rather than an energetically demanding92 optimization pro

cess.24 From this perspective, seemingly suboptimal strategies 
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can provide important information about the specific inductive 

biases used by the brain.93

Our results suggest that biased cortical domains are a way of 

implementing these inductive biases. Indeed, neurons in these 

domains typically prefer environmentally common stimuli, such 

as faces (IT cortex),12 cardinal orientations (V1 and V2),11 and ex

panding optic flow patterns (area MST).13,14 Given that subjects 

readily learn readouts that rely on this kind of bias (Figure 2), it 

seems likely that similar readouts have formed in previous exper

iments on perceptual decision-making. That is, psychophysical 

subjects might perform discrimination tasks for some classes 

of stimuli by simply detecting the presence of a preferred stim

ulus on each trial.36
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STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Two adult female rhesus monkeys (5 – 7 kg) participated in this study. Initially, under general anesthesia, MRI-compatible titanium 

head posts were attached to each monkey’s skull to stabilize their heads during training and experimental sessions. Target brain 

areas were accessed through sterile plastic recording chambers (Crist Instruments) that were permanently implanted on the skulls. 

For both animals, these chambers provided access to the ventral region of area V4 in the right hemisphere, via a dorsal-posterior 

approach (Figure S1A). All experimental procedures followed the guidelines of the Canadian Council on Animal Care and were 

approved by the Institutional Animal Care Committee at the Montreal Neurological Institute.

METHOD DETAILS

Electrophysiological recordings and pharmacological injections

Area V4 was identified using anatomical MRI scans, the relationship between receptive field size and eccentricity,94 and transitions 

from white to gray matter through different brain regions (Figure S1A). Each recording session began with the installation of a grid 

system within the recording chamber, to ensure precise electrode placement. The grid was aligned to predefined coordinates 

that were identical across all phases of the experiment in each animal.

This was followed by the penetration of the dura using a 23-gauge stainless steel guide tube. Relative to the cortical surface, the 

electrodes were advanced to an average depth of 22.1 ± 0.7 mm for Monkey 1 and 20.7 ± 0.8 mm for Monkey 2 (Figure S1A), using an 

Oil Hydraulic Micromanipulator (Narishige International USA, INC.).

We recorded single-unit activity using linear microelectrode arrays (V-Probe; Plexon). For the passive fixation tasks, 32-channel 

V-probes were employed, while 16-channel electrodes were used during sessions that involved muscimol injections. Neuronal sig

nals were recorded using an Intan Technologies system and filtered between 0.5 and 7 kHz. Initial spike detection involved identifying 

crossings that exceeded a threshold of ±3 standard deviations, robustly estimated for each channel. Short segments surrounding 

each threshold crossing were then extracted and clustered using UltraMegaSort 2000, a k-means-based clustering algorithm.95

Behavioral tasks and visual stimuli

Animals were seated in a standard primate chair (Crist Instruments). Visual stimuli were back-projected onto a semi-transparent 

screen using an LED video projector (VPixx Technologies, PROPixx) with a refresh rate of 120 Hz. The screen spanned an area of 

80◦ × 50◦ of visual angle at a viewing distance of 81 cm. A neutral gray (54 cd/m2) served as the background color for all tasks. 

Eye movements for both animals were tracked using an infrared eye tracking system (EyeLink1000, SR Research) with a sampling 

rate of 1,000 Hz.

Receptive field mapping

Before the behavioral sessions began, we conducted initial measurements to assess stimulus selectivity (Figure 1) and receptive field 

properties for each animal. During these sessions, animals maintained fixation while sparse noise stimuli were presented at different 

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Muscimol Sigma M1523 Sigma; CAS # 2763-96-4

Experimental models: Organisms/strains

Rhesus macaque (Mucaca mulatta) N/A N/A

Software and algorithms

MATLAB MathWorks https://www.mathworks.com/products/matlab.html

NIMH MonkeyLogic NIH https://monkeylogic.nimh.nih.gov/

Intan RHX Data Acquisition Software Intan Technologies system https://intantech.com/downloads.html? 

tabSelect=Software&yPos=100

UltraMegaSort2000 – Spike sorting MathWorks https://github.com/danamics/UMS2K

Other

Plexon V probes Plexon PLX-VP-16-15ED-100-SE-140-65(460)-CT-300-F5/6

RHD Recording System Intan Technologies system https://intantech.com/RHD_system.html
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spatial locations. The resulting data were fit with a 2D Gaussian function, to recover the receptive field centers and sizes (Figure S1B). 

These measurements were performed at the same grid position used for recordings and injections.

Passive fixation task

For the pre-training assessment of stimulus selectivity, we used 152 diverse images, which we divide into three broad categories. The 

first category included angles, curves, curve-line combinations, lines, and star shapes, with each sub-category featuring 8 variations 

across different orientations at 45-degree increments. The second category included Glass patterns, circular gratings, radial grat

ings, polygonal gratings, linear gratings, and drifting gratings, each with 8 variations in shape, spatial frequency, or motion direction. 

Drifting grating stimuli were only presented to Monkey 1, as Monkey 2 consistently broke fixation when presented with moving stim

uli. The third category included realistic images of animals, body parts, human faces, insects, monkey faces, natural scenes, tools, 

and vegetables, each with 8 different exemplars. Our selection of stimulus categories was influenced by those used in previous 

studies.46 A sample image from each sub-category is shown in Figure S1C. All images were generated in MATLAB using extensions 

from the Psychophysics Toolbox.96

Animals were required to fixate a 0.5◦ green square at the center of the screen and maintain their gaze within ± 1.0◦ of the fixation 

point. After a 500 ms baseline period, the first stimulus—randomly selected from the set of 152 images—was displayed on the screen 

for 200 ms. This was followed by a 200 ms delay during which only the fixation point remained visible, before the next image ap

peared. This on-off cycle was repeated with up to 10 different images per trial. One reward was dispensed after a random number 

of images (ranging from 3 to 7); if the animal maintained fixation until the end of the cycle, a double reward was dispensed. Stimuli 

were centered on the measured RFs of the neurons under study (Monkey 1: 2.1 ± 0.5◦ radius at 1.5 ± 0.4◦ eccentricity; Monkey 2: 

1.5 ± 0.7◦ radius at 2.4 ± 0.9◦ eccentricity; Figure S1B). Stimulus sizes were 3.5◦ × 3.5◦ for Monkey 1 and 4◦ × 4◦ for Monkey 2.

Delayed match-to-sample task

Monkeys were trained on a delayed match-to-sample (DMS) task that required them to identify which of two choice stimuli (a circular 

grating or a radial grating) matched a previously presented sample image. Each trial began with an initial fixation period of 500 ms, 

followed by the presentation of a sample stimulus for 200 ms. This sample stimulus, either a circular or a radial grating, had Gaussian 

noise added at one of eight levels (from 100% SNR, a noiseless image, to 0% SNR, pure noise) using Psychophysics Toolbox and 

MATLAB’s image processing toolbox. The size and position of the images were identical to those used during the passive fixation 

task for each animal (see Receptive Field Mapping and Visual Stimuli section). Luminance and contrast were balanced for all images 

across all phases of the experiment. For both low and high spatial frequency gratings, the average contrast of the images, measured 

using the RMS contrast method, was 0.086 ± 0.008. There was no significant difference in image contrast compared to the images 

used during the passive fixation task (p = 0.92, t-test).

After the sample was removed, a randomized delay period of 250 - 500 ms followed. Subsequently, noiseless (100% SNR) circular 

and radial grating stimuli appeared on either side of the fixation point. These response cues were positioned ±7◦ from the fixation 

point along the horizontal meridian. To avoid the development of a fixed sensorimotor mapping,78 the left/right position of each 

grating was randomized from trial to trial. The monkey had to make a saccade towards the stimulus that matched the sample and 

maintain fixation on it for 800 ms to receive a fluid reward. A new trial began after a 500 ms interval during which no stimulus was 

presented. If the monkey chose incorrectly, we imposed a 1.5-second time-out before the next trial.

To familiarize the animals with the concept of the DMS task, we first trained each animal using a white circular image as the sample 

stimulus. During this phase, the choice stimuli consisted of black and white circles, and the animals were required to select the white 

image to receive a reward. After approximately two weeks, we switched the sample stimulus to a black image and repeated the same 

procedure. The animals typically learned the black sample image within a few days.

Next, we began alternating between white and black sample images on a day-by-day basis. Following this, we interleaved trials in 

blocks of 100 (e.g., 100 trials with white samples followed by 100 trials with black samples). Gradually, we reduced the block size until 

the animals were able to match the color of the choice stimulus to the sample stimulus in a randomized, trial-by-trial manner. By the 

final five sessions of this phase, their performance consistently exceeded 90%. This familiarization phase took approximately two 

months to complete.

After the initial familiarization phase, the monkeys were introduced to low spatial frequency circular and radial gratings. We did not 

observe any systematic bias toward circular or radial gratings when the two stimulus types were first introduced after the initial famil

iarization phase. At the beginning, animals occasionally showed mild and inconsistent preferences, sometimes favoring radial grat

ings and sometimes circular, but these tendencies were random and not sustained across sessions. In fact, the more common 

behavioral bias observed during early training was spatial (i.e., toward one side of the screen), rather than stimulus-type specific.

To prevent the reinforcement of any such biases, we actively monitored behavior throughout training and dynamically adjusted 

stimulus contingencies, for instance by increasing the frequency of correct stimuli on the side or of the type that the animal was avoid

ing. This approach ensured balanced exposure and discouraged the development of fixed biases.

To prevent loss of motivation, we avoided presenting highly noisy stimuli early in training. Animals often disengaged when the task 

was too difficult, responding randomly to obtain fluid rewards 50% of the time. After two sessions with the 12% SNR stimulus, addi

tional noise levels were introduced incrementally at the beginning of each session. All noise levels were fully integrated by session 16 

for Monkey 1 and session 18 for Monkey 2 in Phase 1.
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Monkey 1 was trained five days per week and completed 70 sessions (∼14 weeks), achieving an average threshold of 12.4% ± 

3.1% during the final five sessions of Phase 1. Monkey 2 was trained daily and completed 39 sessions (∼5.5 weeks), reaching an 

average threshold of 9.3% ± 1.2% during its final five sessions.

In Phase 2, the animals were trained on the same task structure but with high spatial frequency gratings (2.0 cpd). Despite famil

iarity with the task structure, both monkeys exhibited poor initial performance with the new stimuli. Even for noiseless trials, their ac

curacy dropped below 65%. This increased lapse rate is due to an aversion to changes in routine, rather than to a lack of task 

understanding.

As in Phase 1, training began with noiseless stimuli, and noisier stimuli were introduced gradually. Monkey 1 met the performance 

criterion to add the 12% SNR stimulus after 8 sessions; Monkey 2 required 16 sessions. In both cases, the full range of noise levels 

was introduced over the next two sessions. Monkey 1 completed 54 sessions (∼11 weeks) in Phase 2, with an average threshold of 

12.4% ± 3.1% in the final five sessions. Monkey 2 completed 48 sessions (∼7 weeks), achieving a threshold of 9.3% ± 1.2%.

In Phase 3 (Monkey 1 only), all noise levels were introduced from the first session. This phase lasted two weeks (10 sessions), dur

ing which the performance threshold remained stable, with an average of 10.8% ± 2.6%.

In all phases, muscimol injections began only after the completion of training and stabilization of performance. All behavioral data 

presented in Figures 2, 3, 4, 5, and 7 were collected after training was completed in each respective phase.

Note that we did not present the 0% SNR stimulus to Monkey 2, as she consistently refused to do trials containing this stimulus. 

Also in Phase 2, for low spatial frequency stimuli, Monkey 1 consistently closed her eyes whenever the 0% SNR stimulus appeared on 

the screen. As a result, we did not obtain a sufficient number of trials at this noise level to include in the analysis.

Neural data

In Phase 1, we recorded from 93 neurons in Monkey 1 (of which 73 preferred circular gratings) and 53 neurons in Monkey 2 (32 

preferred circular gratings). In Phase 2, we recorded from 80 neurons in Monkey 1 (56 preferred circular gratings) and 35 neurons 

in Monkey 2 (22 preferred circular gratings). In Phase 3, we recorded from 50 neurons in Monkey 1, of which 31 preferred circular 

gratings. Stimulus preference was determined by comparing the mean firing rates evoked by circular versus radial gratings, using 

only the noiseless (100% SNR) stimuli across trials.

Muscimol injection

At the start of each behavioral session, we returned to the grid positions used during the initial mapping of stimulus selectivity and 

manually estimated multi-channel receptive fields by positioning moving grating stimuli within the approximate visual field of the neu

rons. This process ensured that the inactivated neurons had receptive fields consistent with those identified during the initial mapping 

sessions. We then performed muscimol inactivation.

The linear array included a glass capillary with an inner diameter of 40 μm, positioned between contacts 5 and 6 of the array (with 

contact 1 being the most dorsal). The other end of the capillary was connected to a Hamilton syringe through plastic tubing. Muscimol 

was injected using a mini-pump, typically at a volume of 2 μL and a rate of 0.05 μL/min, with a concentration of 10 mg/mL.33 We 

confirmed cessation of neural activity before starting behavioral experiments, 45 minutes post-injection. Muscimol injections and 

initial behavioral tests were conducted on the afternoon of the first day, with further testing at 18 hours and 2 days later. As shown 

in Figure S3, behavioral impairments were localized to the RF area of the neurons near the injection site. Given this specificity and the 

fact that the spread of muscimol is typically less than 2 mm,97 it is unlikely that the drug spread into nearby retinotopic regions of 

cortex. Muscimol experiments were performed no more than once per week.

QUANTIFICATION AND STATISTICAL ANALYSIS

Psychometric curve fitting

To quantify perceptual performance, we fit psychometric functions to behavioral data using a four-parameter logistic model imple

mented with the Palamedes Toolbox96 in MATLAB. The logistic function is mathematically well-suited for binary decision and percep

tual discrimination tasks as it captures the characteristic S-shaped progression of performance as a function of stimulus strength, 

with bounds between 0% and 100%.98 Model parameters included the threshold (α), slope (β), guess rate (γ), and lapse rate (λ), which 

were optimized via maximum likelihood estimation. The best-fitting function was selected based on the highest log-likelihood and 

lowest deviance.

The logistic function used is defined as:

ψ(x) = γ + (1 − γ − λ) ×
1

1+e− β(x − α)

where ψ(x) is predicted proportion of correct responses at signal level x (SNR %).

While the logistic function provided good fits for visualization, particularly for illustrating performance across all SNR levels in 

Figures 2A, 3F, 4A, 5A and 7B, we used a Weibull function to derive a more accurate and reliable estimate of behavioral thresholds 

for each type of grating. The Weibull function is well-suited for estimating perceptual thresholds in discrimination paradigms, 
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especially when applied to single stimulus types. For each grating condition (circular and radial), we fit a Weibull function to the 

behavioral data, defining threshold as the SNR level at which performance reached 82% correct, a standard in 2AFC tasks corre

sponding to 63.2% of the rise from chance to perfect accuracy.98

Behavioral performance as a function of signal level (SNR %) was modeled using the cumulative distribution function (CDF) of the 

Weibull function:

ψ(x) = γ + (1 − γ − λ) ×
[

1 − exp

(

−
(x

α

)β
)]

where α determines the threshold, β corresponds to the slope of the function, γ is the guess rate and λ is the lapse rate. This function 

was fit using the maximum likelihood algorithm from MATLAB Palamedes toolbox for analyzing psychophysical data99 (Figures 2B, 

4B, 5B and 7D).

Bias calculation

We used the equation below to calculate behavioral biases100:

Bias =
(
Norminv2(Circular grating hit rate) − Norminv2(Radial grating hit rate)

) /
2 

where Norminv is the inverse cumulative distribution function of the standard normal distribution. A log-transform was used to re

move a nonlinear effect of bias. Negative bias values indicate a bias toward radial stimuli, and positive values indicate a bias toward 

circular stimuli (Figures 2C, 4C, and 5C).

Neural discriminability for high and low spatial frequencies

To quantify neural discriminability between stimulus conditions, we trained a support vector machine (SVM) classifier on neural re

sponses recorded from each monkey during the Preliminary Phase. Neural activity was represented as a feature matrix, where each 

row corresponded to a trial and each column represented the firing rates of recorded neurons. Pairs of circular and radial gratings 

with low and high spatial frequency images were analyzed separately, with trials labeled according to their corresponding stimulus 

condition. We applied a linear SVM using MATLAB’s (fitcsvm) function and evaluated classification performance using 5-fold cross- 

validation to ensure robustness. Discriminability was assessed as the mean classification accuracy across folds, reflecting how well 

neural activity patterns differentiated between the two stimulus conditions. This procedure was repeated 20 times to ensure reli

ability. To statistically compare discriminability across image pairs, we performed a t-test on classification accuracies, testing 

whether SVM performance differed significantly between the two spatial frequency conditions.

Neural sensitivity (d’)

The d’ measure of neural sensitivity quantifies the strength of selectivity across all noise levels, as follows:

d′ =
Rcircular − Rradial
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

circular+σ2
radial

2

√

where Rcircular , Rradial, σcircular and σradial represent the mean responses and standard deviations in response to circular and radial 

grating across all noise levels (Figure 6D).

Choice probability

Choice probability (CP) was used to quantify the relationship between behavioral choice and response variability.53 For an identical 

stimulus, the responses can be grouped into two distributions based on whether the monkeys made the choice that corresponds to 

the neuron’s preferred type of grating or the non-preferred grating. As long as the monkeys made at least 6 choices for each type of 

grating with a minimum of 3 trials involving a wrong choice, ROC values were calculated from these response distributions. The area 

underneath the ROC curve provides the CP value (Figure 6C).

To analyze the dynamics of choice-related activity, after calculating the CP for each neuron across stimulus conditions, spanning 

from 300 ms before to 500 ms after stimulus onset, using a window size of 75 ms and a step size of 5 ms. The emergence of statis

tically significant CP was detected with the Cumulative Sum (CUSUM) algorithm.101

Noise correlations

Noise correlations were calculated as the Pearson correlation coefficient representing the trial-by-trial covariation of responses from 

pairs of neurons recorded simultaneously within a 200-ms window, spanning from 50 ms to 250 ms after stimulus onset.87 Each neu

ron’s responses were z-scored by subtracting the average response and dividing by the standard deviation across multiple stimulus 

presentations. This procedure eliminated the impact of stimulus strength and direction on the average response, allowing noise cor

relation to solely capture correlated trial-to-trial fluctuations around the mean response. To avoid correlations influenced by extreme 

values, only trials with responses within ±3 standard deviations of the mean were considered.87 Additionally, varying the window size 

between 100 ms and 400 ms did not affect the pattern of noise correlation results compared to the 200-ms window size.
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Readout weights

We estimated the readout weight (β) for each neuron, using the procedure outlined by Haefner and colleagues.55 According to this 

measure, readout weights depend on CP and the noise correlation matrix C:

CP ≈ 1

2
+

̅̅̅
2
√

π
(Cβ)k̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CkkβT Cβ

√ (1) 

Since in the denominator (

̅̅̅̅̅̅̅̅̅̅̅

βTCβ
√

) is constant across all neurons in each session, we neglected this term and simplified the equa

tion to:

β = C− 1

⎛

⎜
⎜
⎝

π ×
̅̅̅̅̅̅̅
Ckk

√
×

(

CP −
1

2

)

̅̅̅
2
√

⎞

⎟
⎟
⎠

We computed C in each session with more than three neurons, and used this information, along with each neuron’s CP, to calculate 

the β values.

Hierarchical clustering analysis of neural selectivity

We employed hierarchical clustering to categorize image groups based on their neuronal response patterns, applying complete link

age with a threshold value of 0.2.102 The primary objective of this method was to identify whether circular and radial grating stimuli 

emerged as the most distinct clusters among all image categories. Initially, we analyzed the mean normalized neuronal activity for 

each image category, comprising eight images per category, to assess the selectivity of the V4 neuronal population. Subsequently, 

we calculated the Calinski-Harabasz criterion103 to determine the optimal and most reliable number of clusters for each monkey’s 

dataset. After establishing the ideal cluster count, we evaluated linkage distances, which measure the dissimilarity between clusters, 

to quantify the separation between clusters.102 Linkage distance provides a numerical representation of how far apart clusters are in 

the hierarchical tree, with larger distances indicating more distinct differences in neuronal response patterns between the clusters. 

For both monkeys, our analysis demonstrated that circular and radial grating categories consistently formed the most distinct clus

ters, with the greatest separation distance observed between them. These results highlight that these two image types elicited signif

icantly dissimilar neuronal responses within the V4 population.

Permutation testing was then performed to validate whether the observed clustering and the large distance between the circular 

and radial grating categories were statistically meaningful. To achieve this, a null distribution was generated by shuffling the data 

labels and recalculating the clusters 1,000 times. For each permutation, hierarchical clustering was repeated, and the linkage dis

tance between the radial and circular grating clusters was calculated. This process resulted in 1,000 linkage distance values, repre

senting what would be expected under random conditions. Comparing the actual linkage distance to this null distribution revealed 

that the observed separation between the circular and radial gratings was significantly larger than expected by chance (p < 0.001, 

t-test). These results confirmed the statistical robustness of the clustering and highlighted the distinctiveness of these two image 

categories.

Neurometric Function Analysis

To quantify the neural discriminability of circular vs. radial grating stimuli across different noise levels, we computed neurometric 

functions based on the spike activity of individual V4 neurons. For each neuron, we first identified trials corresponding to circular 

and radial stimuli at each SNR level. Spike counts were measured in a 200 ms window starting at 50 ms after stimulus onset, and 

we computed the mean firing rate across trials for each condition.

For each neuron and SNR level, we then calculated the area under the receiver operating characteristic (ROC) curve (AUC), quan

tifying how well the neuron’s spike rate distinguished between the two stimulus classes. Neurons were classified as circular- or radial- 

preferring based on the sign of their overall d-prime value across all conditions.

To compare population-level neural performance with behavior, we averaged AUC values across neurons within each preference 

group and computed the standard error of the mean (SEM). The resulting average neurometric data were then fit with a logistic func

tion, using the same fitting procedure as for the behavioral psychometric data.

Statistical comparisons

Statistical comparisons of behavioral thresholds and bias values were based on the Wilcoxon signed-rank (WSR) test when the sizes 

of the data sets were equal; otherwise, the Wilcoxon rank-sum test (WRS) was used. For CPs, since we reported means, we used a 

t-test (MATLAB function) to evaluate their significance. Generally, using rank-based statistical methods produced similar patterns of 

p-values, sometimes even yielding lower p-values. Whenever multiple comparisons across conditions were required, we used Tu

key’s Honestly Significant Difference method to adjust for multiple comparisons, maintaining the false discovery rate (FDR) at 5% for 

all tests.

To estimate variability in the animals’ performance, including psychometric thresholds and biases for Figure 7, we employed a non- 

parametric bootstrap procedure. Trial-level data were resampled with replacement within each stimulus (noise) level to generate 

1,000 surrogate datasets. To estimate the standard error of the animals’ performance at each noise level, we computed the standard 
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deviation of the resampled distribution, and the 2.5th and 97.5th percentiles were used to construct 95% confidence intervals. For 

each bootstrap sample, the psychometric function was re-fitted using the same method as applied to the original data. Thresholds— 

defined as the stimulus level corresponding to 75% correct performance—were extracted from each fit. The standard deviation of the 

resulting threshold distribution provided the standard error, and confidence intervals were computed as above. To estimate behav

ioral bias, we applied the same bootstrap procedure separately to data from pre-injection and 18-hour post-injection sessions. Bias 

was computed for each resampled dataset at each noise level, and the standard error was estimated from the distribution of bias 

values.
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Figure S1: Electrode localization, receptive field mapping, and V4 visual responses. Related to 
Figure 1. A) Recording chamber and electrode array locations. The left panel displays the location 
of the electrophysiological recording chamber. It was positioned to access the brain region 
between the lunate sulcus and the superior temporal sulcus (STS). According to a standard 
macaque brain atlas and previous literature, dorsal and ventral V4 are positioned beneath this 
area. Each day, we lowered the electrode approximately 20-23mm to reach ventral V4. The right 



panel shows a coronal MRI view from one of the monkeys. The red arrow indicates the approximate 
location of the electrode tip post-penetration. The injection sites were identical to the recording 
sites and remained consistent across all experimental phases for each monkey. B) Receptive field 
mapping for the neurons near the injection sites Top panel: Example RFs from each monkey based 
on average neuronal responses to sparse-noise stimuli. Colors within the circles indicate response 
strength, and each circle represents the best-fit Gaussian of the RF. Bottom panel: mean RF 
eccentricity was 1.4 ± 0.7º before training and 1.6 ± 0.7º after training in Monkey 1 (p > 0.05, WRS 
test), and 2.1 ± 0.6º and 2.4 ± 0.9º in Monkey 2 (p > 0.05, WRS test). The stimulus placement was 
based on the RF mapping. HM and VM indicate the horizontal and vertical meridian. C) Visual 
stimuli set. Sample images from each category used during the passive fixation task in the 
Preliminary Phase. Each category consists of 8 similar stimuli, varying by orientation, direction, or 
shape, depending on the category. For Monkey 1, drifting grating motion stimuli were also 
presented. This set of images was used in both the V4 and PIT areas. D) Response Activity of V4 
Neurons to the set of visual stimuli. Normalized mean firing rates of V4 neurons in response to all 
stimuli presented during the passive fixation task in the Preliminary Phase. Points within each 
category represent variations of the stimulus class (e.g., different line orientations or faces). The 
top panel represents Monkey 1, and the bottom panel represents Monkey 2. For both monkeys, low 
spatial frequency circular gratings elicited the highest response activity in the V4 area. 
 
 
 

 



 



Figure S2: Behavioral and neural responses to circular and radial gratings during Phase 1. 
Related to Figure 2. A) Psychophysical thresholds for both monkeys in Phase 1 (low spatial 
frequency stimuli). B) Average neuronal discriminability (AUC) as a function of SNR for circular and 
radial grating discrimination. Each panel corresponds to Phase 1 training for one monkey, matching 
the layout of the behavioral psychometric function figures. Neurons were grouped by stimulus 
preference (circular or radial) based on d-prime values. AUCs were averaged within each group, 
and logistic fits illustrate population-level neurometric performance. C) Normalized mean firing 
rates of V4 neurons across noise levels during Phase 1. Population responses differed significantly 
between the two grating types for the three least noisy stimuli (p < 0.05, t-test). Error bars indicate 
SEM; asterisks mark significant differences. 
 

 

 

 



Figure S3: The effect of muscimol on behavioral performance is localized and specific. 
Related to Figure 3. A) As a control for potential non-specific effects of our inactivation procedure, 
we injected saline into the same sites and in the same amount as in the muscimol sessions. Saline 
injections had no effect on the animals' performance (top panel), confirming that the behavioral 
deficits were specifically due to muscimol. B and C) We also verified that the behavioral deficit was 
localized to the vicinity of the RFs of the neurons at the injection site. In Monkey 2, we placed 
gratings of the same size around the injection site, within the vicinity of the RFs of V4 neurons 
recorded. When the stimulus was positioned either above the vicinity of the RFs (B) or in the other 
hemisphere on the right visual field (C), muscimol injection did not change the behavioral 



thresholds. This demonstrates that the effect of injection is spatially localized and specific to the 
type of drug used for inactivation. 

 

 

 

 

 

 



 

Figure S4: Behavioral and neural responses to circular and radial gratings during Phase 2 (high 
spatial frequency stimuli). Related to Figure 4. A) Psychophysical thresholds for both monkeys in 
Phase 2 (high spatial frequency stimuli). B) Average neuronal discriminability (AUC) as a function of 
SNR for circular and radial grating discrimination. Each panel corresponds to Phase 2 training for 
one monkey, matching the layout of the behavioral psychometric function figures. Neurons were 
grouped by stimulus preference (circular or radial) based on d-prime values. AUCs were averaged 
within each group, and logistic fits illustrate population-level neurometric performance. Error bars 
indicate SEM. 
 
 
 



 
 
Figure S5: Behavioral and neural responses to circular and radial gratings during Phase 2 (low 
spatial frequency stimuli). Related to Figure 5. A) Psychophysical thresholds for both monkeys in 
Phase 2 (low spatial frequency stimuli). B) Average neuronal discriminability (AUC) as a function of 
SNR for circular and radial grating discrimination. Each panel corresponds to Phase 2 training for 
one monkey, matching the layout of the behavioral psychometric function figures. Neurons were 
grouped by stimulus preference (circular or radial) based on d-prime values. AUCs were averaged 
within each group, and logistic fits illustrate population-level neurometric performance. Error bars 
indicate SEM. 
 
 



 

 



Figure S6: Phase-dependent modulation of readout weights, choice probabilities, and noise 
correlations in V4. Related to Figure 6. A) Phase-dependent changes in V4 neuronal readout 
weights and choice probabilities for each monkey. Mean readout weights of V4 neurons. Readout 
weights were calculated for neurons with different stimulus preferences across experimental 
phases and spatial frequencies. In Phase 1, for both monkeys, radial-selective neurons (orange) 
had negative weights, which were significantly different from circular-selective neurons (blue) (p < 
0.05; ANOVA, FDR-corrected). In Phase 2, no significant difference was observed between the two 
groups for both low- and high-spatial-frequency gratings. Mean choice probabilities (CPs) of V4 
neurons. A similar pattern was observed in CPs, reflecting the trends seen in the readout weights. 
B) CP prediction error based on relative CP. This analysis characterizes noise correlations within 
and between subpopulations of neurons with different stimulus preferences (Equation 3; see 
Methods) or across all neurons as a single unified population (Equation 4; see Methods). In Phase 
1, Equation 4 (single unified population) predicted CP values significantly better than Equation 3 (p 
< 0.05, t-test). However, in Phase 2, Equation 3 (two subpopulations) outperformed Equation 4 (p < 
0.05, t-test). Prediction errors were calculated by comparing the predicted CP values to the real 
(observed) values using the Mean Squared Error. C) Noise correlations of V4 neurons across 
phases. We observed a significant increase in pairwise noise correlations, from Phase 1 to Phase 2 
in both monkeys for low spatial frequency stimuli. This increase was primarily driven by circular-
selective neurons, which exhibited a significant rise in noise correlations from Phase 1 to Phase 2 (F 
(5,602) = 5.41, p < 0.001 for Monkey 1, and F (5,334) = 4.62, p = 0.002 for Monkey 2; ANOVA, FDR-
corrected). In contrast, radial grating-selective neurons showed no significant change in noise 
correlations between phases (p > 0.05 for Monkey 1 and 2, ANOVA, FDR-corrected). Noise 
correlations computed for high spatial frequency stimuli did not significantly differ from those for 
low spatial frequency stimuli across both phases (p > 0.05 for Monkey 1 and 2, ANOVA, FDR-
corrected). Error bars indicate the standard error of the mean (SEM). Asterisks denote statistically 
significant differences. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 



 
Phase Spatial 

frequency 
Stimulus 

preference 
Choice 

probability 
(CP) 

Significance 
of CP vs. 0.5 

Noise 
correlation 

Readout 
weights 

(β) 

Significance 
of weights 

vs. 0 
1 Low Circular 0.526 ± 

0.004 
p < 0.01 0.051 ± 

0.006 
0.065 ± 
0.099 

p < 0.01 

1 Low Radial 0.483 ± 
0.006 

P < 0.01 0.071 ± 
0.009 

-0.052 ± 
0.014 

P < 0.01 

2 High Circular 0.539 ± 
0.013 

P = 0.012 0.050 ± 
0.009 

0.099 ± 
0.034 

P < 0.01 

2 High Radial 0.509 ± 
0.014 

P = 0.32 0.051 ± 
0.008 

0.066 ± 
0.039 

P = 0.047 

2 Low Circular 0.502 ± 
0.008 

P = 0.76 0.124 ± 
0.007 

0.048 ± 
0.018 

P = 0.013 

2 Low Radial 0.523 ± 
0.011 

p = 0.011 0.089 ± 
0.011 

0.041 ± 
0.017 

p = 0.032 

 
Table S1 - Choice probability (CP), noise correlation, and readout weights (β) across phases for 
both monkeys, analyzed for each subpopulation of V4 neurons. Related to Figure 6. 
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